End point gradient estimates for quasilinear parabolic equations with variable exponent growth on nonsmooth domains
نویسندگان
چکیده
In this paper, we study quasilinear parabolic equations with the nonlinearity structure modeled after p(x, t)-Laplacian on nonsmooth domains. The main goal is to obtain end point Calderón-Zygmund type estimates in variable exponent setting. a recent work [1], obtained were strictly above natural t) and hence there was gap between energy (see (1.3) (1.2)). Here, bridge case of [1]. To end, make use Lipschitz truncation developed [2] significantly improved priori below stability constants. An important feature techniques used here that unified intrinsic scaling introduced [3], which enables us handle both singular degenerate cases simultaneously.
منابع مشابه
Global gradient estimates for degenerate parabolic equations in nonsmooth domains
Abstract. This paper studies the global regularity theory for degenerate nonlinear parabolic partial differential equations. Our objective is to show that weak solutions belong to a higher Sobolev space than assumed a priori if the complement of the domain satisfies a capacity density condition and if the boundary values are sufficiently smooth. Moreover, we derive integrability estimates for t...
متن کاملAnisotropic quasilinear elliptic equations with variable exponent
We study some anisotropic boundary value problems involving variable exponent growth conditions and we establish the existence and multiplicity of weak solutions by using as main argument critical point theory. 2000 Mathematics Subject Classification: 35J60, 35J62, 35J70.
متن کاملA priori estimates for quasilinear degenerate parabolic equations
We prove some maximum and gradient estimates for classical solutions to a wide class of quasilinear degenerate parabolic equations, including first order ones. The proof is elementary and exploits the smallness of the domain in the time direction.
متن کاملGradient estimates for degenerate quasi-linear parabolic equations
For a general class of divergence type quasi-linear degenerate parabolic equations with differentiable structure and lower order coefficients infinitesimally form bounded with respect to the Laplacian we obtain Lq-estimates for the gradients of solutions, and for the lower order coefficients from a Kato-type class we show that the solutions are Lipschitz continuous with respect to the space var...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Calculus of Variations and Partial Differential Equations
سال: 2021
ISSN: ['0944-2669', '1432-0835']
DOI: https://doi.org/10.1007/s00526-021-01982-y